On the Transformations of Symplectic Expansions and the Respective Bäcklund Transformation for the Kdv Equation

نویسنده

  • E. Kh. Khristov
چکیده

By using the Deift–Trubowitz transformations for adding or removing bound states to the spectrum of the Schrödinger operator on the line we construct a simple algorithm allowing one to reduce the problem of deriving symplectic expansions to its simplest case when the spectrum is purely continuous, and vice versa. We also obtain the transformation formulas for the correponding recursion operator. As an illustration of this approach, the Bäcklund transformations for the KdV equation are constructed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bäcklund–Darboux Transformations and Discretizations of Super KdV Equation

For a generalized super KdV equation, three Darboux transformations and the corresponding Bäcklund transformations are constructed. The compatibility of these Darboux transformations leads to three discrete systems and their Lax representations. The reduction of one of the Bäcklund–Darboux transformations and the corresponding discrete system are considered for Kupershmidt’s super KdV equation....

متن کامل

Explicit multiple singular periodic solutions and singular soliton solutions to KdV equation

 Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...

متن کامل

Binary Darboux-Bäcklund Transformations for Manin-Radul Super KdV Hierarchy

We construct the supersymmetric extensions of the Darboux-Bäcklund transformations (DBTs) for the Manin-Radul super KdV hierarchy using the super-pseudo-differential operators. The elementary DBTs are triggered by the gauge operators constructed from the wavefunctions and adjoint wavefunctions of the hierarchy. Iterating these elementary DBTs, we obtain not only Wronskian type but also binary t...

متن کامل

Binary Darboux-Bäcklund Transformations for the Manin-Radul Super KdV Hierarchy

We construct the supersymmetric extensions of the Darboux-Bäcklund transformations (DBTs) for the Manin-Radul super KdV hierarchy using the super-pseudo-differential operators. The elementary DBTs are triggered by the gauge operators constructed from the wave functions and adjoint wave functions of the hierarchy. Iterating these elementary DBTs, we obtain not only Wronskian type but also binary...

متن کامل

On the Use of the Lie–Bäcklund Groups in the Context of Asymptotic Integrability

A new approach to the problem of asymptotic integrability of physical systems is developed and applied to the KdV equation with higher-order corrections. A central object of the approach is an integrable reference equation, which is constructed by defining a proper Lie– Bäcklund group of transformations and applying it to the leading order equation. It is shown that the solitary wave solutions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009